A neat way of quantifying arbitrary (?) dependence structures between random variables. Useful in, e.g. Quantitative Risk Management.

The trick is simple: Informally, you look at the marginal iCDF of each of \(n\) variables, and fiddle with the joint distribution of those marginals on \([0,1]^n\). (That’s assuming variables are absolutely continuous w.r.t some underlying measure space; distribution with atoms are more tricky.)

This is a good trick, although I need to sit down and think through it. I would like to better understand:

- the relationship between the underlying event space and the instrumental one we “sort of” construct in copula modeling.
- Is any information lost with non-monotonic coupling in a copula model?
*conditional*copulas and how they work- the occasionally-mentioned relationship between copula entropy and mutual information.

## Cite me baby

- Berg11
- Bergsma, W. (2011) Nonparametric testing of conditional independence by means of the partial copula.
*arXiv:1101.4607*. - CaVi09
- Calsaverini, R. S., & Vicente, R. (2009) An information-theoretic approach to statistical dependence: Copula information.
*EPL (Europhysics Letters)*, 88(6), 68003. DOI. - Char03
- Charpentier, A. (2003) Tail distribution and dependence measures. (pp. 24–27). Presented at the XXXIV International Astin Colloquium, Berlin, August
- ChHu07
- Chen, S. X., & Huang, T.-M. (2007) Nonparametric estimation of copula functions for dependence modelling.
*Canadian Journal of Statistics*, 35(2), 265–282. DOI. - ChFa06
- Chen, X., & Fan, Y. (2006) Estimation of copula-based semiparametric time series models.
*Journal of Econometrics*, 130(2), 307–335. DOI. - CGHH14
- Chernozhukov, V., Galichon, A., Hallin, M., & Henry, M. (2014) Monge-Kantorovich Depth, Quantiles, Ranks, and Signs.
*arXiv:1412.8434 [math, Stat]*. - Embr09
- Embrechts, P. (2009) Copulas: A Personal View.
*Journal of Risk and Insurance*, 76(3), 639–650. DOI. - EmLM03
- Embrechts, P., Lindskog, F., & McNeil, A. J.(2003) Modelling dependence with copulas and applications to risk management.
*Handbook of Heavy Tailed Distributions in Finance*, 8(329-384), 1. - EmMS02
- Embrechts, P., McNeil, A. J., & Straumann, D. (2002) Correlation and dependence in risk management: properties and pitfalls.
*Risk Management: Value at Risk and beyond*, 176–223. - FaPa14
- Fan, Y., & Patton, A. J.(2014) Copulas in Econometrics.
*Annual Review of Economics*, 6(1), 179–200. DOI. - FeWe12
- Fermanian, J.-D., & Wegkamp, M. H.(2012) Time-dependent copulas.
*Journal of Multivariate Analysis*, 110, 19–29. DOI. - GeFa07
- Genest, C., & Favre, A. C.(2007) Everything you always wanted to know about copula modeling but were afraid to ask.
*Journal of Hydrologic Engineering*, 12, 347. DOI. - HäOk10
- Härdle, W., & Okhrin, O. (2010) De copulis non est disputandum.
*AStA Advances in Statistical Analysis*, 94(1), 1–31. DOI. - Hofe10
- Hofert, J. M.(2010) Sampling Nested Archimedean Copulas: With Applications to CDO Pricing.
- Hofe08
- Hofert, M. (2008) Sampling Archimedean copulas.
*Computational Statistics & Data Analysis*, 52(12), 5163–5174. DOI. - HoVr13
- Hofert, M., & Vrins, F. (2013) Sibuya copulas.
*Journal of Multivariate Analysis*, 114, 318–337. DOI. - KoYa10
- Kojadinovic, I., & Yan, J. (2010) Modeling multivariate distributions with continuous margins using the copula R package.
*Journal of Statistical Software*, 34(9), 1–20. - KrSG04
- Kraskov, A., Stögbauer, H., & Grassberger, P. (2004) Estimating mutual information.
*Physical Review E*, 69, 066138. DOI. - LaVa03
- Landsman, Z. M., & Valdez, E. A.(2003) Tail conditional expectations for elliptical distributions.
*North American Actuarial Journal*, 7(4), 55–71. DOI. - MaSc12
- Mai, J.-F., & Scherer, M. (2012) Simulating copulas: stochastic models, sampling algorithms, and applications. . London : Hackensack, NJ: Imperial College Press ; World Scientific
- MaSu11
- Ma, J., & Sun, Z. (2011) Mutual Information Is Copula Entropy.
*Structural Change and Economic Dynamics*, 16(1), 51–54. DOI. - MaSo03
- Malevergne, Y., & Sornette, D. (2003) Testing the Gaussian copula hypothesis for financial assets dependences.
*Quantitative Finance*, 3(4), 231–250. DOI. - Mcne08
- McNeil, A. J.(2008) Sampling nested Archimedean copulas.
*Journal of Statistical Computation and Simulation*, 78(6), 567–581. DOI. - MiLi02
- Miller, D. J., & Liu, W. (2002) On the recovery of joint distributions from limited information.
*Journal of Econometrics*, 107(1-2), 259–274. DOI. - Nels99
- Nelsen, R. B.(1999) An introduction to copulas. . New York: Springer
- OwRa83
- Owen, J., & Rabinovitch, R. (1983) On the Class of Elliptical Distributions and their Applications to the Theory of Portfolio Choice.
*The Journal of Finance*, 38(3), 745–752. DOI. - PaHo05
- Palaro, H., & Hotta, L. (2005) Using conditional copula to estimate value at risk.
- Patt01
- Patton, A. J.(2001) Modelling time-varying exchange rate dependence using the conditional copula. . University of California, San Diego
- Patt06
- Patton, A. J.(2006) Modelling asymmetric exchange rate dependence.
*International Economic Review*, 47(2), 527–556. - Patt09
- Patton, A. J.(2009) Copula-based models for financial time series. In Handbook of financial time series (pp. 767–785). Berlin, Heidelberg: Springer Berlin Heidelberg
- Patt12
- Patton, A. J.(2012) A review of copula models for economic time series.
*Journal of Multivariate Analysis*, 110, 4–18. DOI. - RéPS12
- Rémillard, B., Papageorgiou, N., & Soustra, F. (2012) Copula-based semiparametric models for multivariate time series.
*Journal of Multivariate Analysis*, 110, 30–42. DOI. - ScFe02
- Scaillet, O., & Fermanian, J.-D. (2002) Nonparametric Estimation of Copulas for Time Series (SSRN Scholarly Paper No. ID 372142). . Rochester, NY: Social Science Research Network
- Schm06
- Schmidt, T. (2006) Coping with copulas. In Copulas from theory to applications in finance.
- Shaw06
- Shaw, W. T.(2006) Sampling Student’s T distribution – use of the inverse cumulative distribution function.
*Journal of Computational Finance*. - Shaw00
- Shaw, W. T.(n.d.) New Methods for Simulating the Student T-Distribution- Direct Use of the Inverse Cumulative Distribution.
- SoDi11
- Sokolinskiy, O., & Dijk, D. J. C.(2011) Forecasting Volatility with Copula-Based Time Series Models.
- TrZi06
- Trivedi, P. K., & Zimmer, D. M.(2006) Copula Modeling: An Introduction for Practitioners.
*Foundations and Trends® in Econometrics*, 1(1), 1–111. DOI. - WuVS07
- Wu, F., Valdez, E., & Sherris, M. (2007) Simulating from Exchangeable Archimedean Copulas.
*Communications in Statistics - Simulation and Computation*, 36(5), 1019–1034. DOI. - Yan07
- Yan, J. (2007) Enjoy the joy of copulas: With a package copula.
*Journal of Statistical Software*, 21(4), 1–21. - ZeDu11
- Zeng, X., & Durrani, T. S.(2011) Estimation of mutual information using copula density function.
*Electronics Letters*, 47(8), 493. DOI.