Remember linear time invariant systems, as made famous by signal processing? Now relax the assumption that the model is linear, or even that its state space is in \(\mathbb{R}^n\). Maybe its state is a measure, or a symbol, or whatever. Now say the word “chaos!”. Pronounce the exclamation mark. Maybe it’s a random system, a stochastic process, or a deterministic process representing the evolution of the measure of stochastic process or whatever.

(Regarding that, one day I should try to understand how Talagrand uses isoperimetric inequalities to derive concentration inequalities.)

Topics that I should connect to this one: the weird end: “nonlinear time series wizardy”, Also “sync”. And “ergodic theory”.

To wish I understood: Takens embedding, and whether it is any statistical use at all.

There is too much to do here, and it’s done better elsewhere. therefore: Idiosyncratic notes only.

## Refs

- ABDP12
- Ay, N., Bernigau, H., Der, R., & Prokopenko, M. (2012) Information-driven self-organization: the dynamical system approach to autonomous robot behavior.
*Theory in Biosciences*, 131(3), 161–179. DOI. - AyDP10
- Ay, N., Der, R., & Prokopenko, M. (2010) Information Driven Self-Organization: The Dynamical System Approach to Autonomous Robot Behavior (No. 10-09-018). . Santa Fe Institute
- AyWe03
- Ay, N., & Wennekers, T. (2003) Dynamical properties of strongly interacting Markov chains.
*Neural Networks*, 16(10), 1483–1497. DOI. - BaPo99
- Badii, R., & Politi, A. (1999) Complexity: Hierarchical Structures and Scaling in Physics. . Cambridge University Press
- Beal03
- Beal, M. J.(2003) Variational algorithms for approximate Bayesian inference. . University of London
- BoMc10
- Bown, O., & McCormack, J. (2010) Taming nature: tapping the creative potential of ecosystem models in the arts.
*Digital Creativity*, 21(4), 215–231. DOI. - CeLZ11
- Ceguerra, R. V., Lizier, J. T., & Zomaya, A. Y.(2011) Information storage and transfer in the synchronization process in locally-connected networks. . Presented at the IEEE Symposium Series in Computational Intelligence (SSCI 2011) - IEEE Symposium on Artificial Life,
- Chaz00
- Chazottes, J.-R. (n.d.) An introduction to fluctuations of observables in chaotic dynamical systems.
- Fras08
- Fraser, A. M.(2008) Hidden Markov models and dynamical systems. . Philadelphia, PA: Society for Industrial and Applied Mathematics
- GlLi88
- Glazier, J. A., & Libchaber, A. (1988) Quasi-periodicity and dynamical systems: An experimentalist’s view.
*IEEE Transactions on Circuits and Systems*, 35(7), 790–809. DOI. - GrSS91
- Grassberger, P., Schreiber, T., & Schaffrath, C. (1991) Nonlinear time sequence analysis.
*International Journal of Bifurcation and Chaos*, 1(3), 521–547. DOI. - HeDG15
- Hefny, A., Downey, C., & Gordon, G. (2015) A New View of Predictive State Methods for Dynamical System Learning.
*arXiv:1505.05310 [cs, Stat]*. - HeBu14
- Heinonen, M., & d’Alché-Buc, F. (2014) Learning nonparametric differential equations with operator-valued kernels and gradient matching.
*arXiv:1411.5172 [cs, Stat]*. - HPVB07
- Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., & Bhattacharya, J. (2007) Causality detection based on information-theoretic approaches in time series analysis.
*Physics Reports*, 441(1), 1–46. DOI. - IoBK06
- Ionides, E. L., Bretó, C., & King, A. A.(2006) Inference for nonlinear dynamical systems.
*Proceedings of the National Academy of Sciences*, 103(49), 18438–18443. DOI. - KaST98
- Kakizawa, Y., Shumway, R. H., & Taniguchi, M. (1998) Discrimination and clustering for multivariate time series.
*Journal of the American Statistical Association*, 328–340. - Kels94
- Kelso, J. A. S.(1994) The informational character of self-organized coordination dynamics.
*Human Movement Science*, 13, 393–413. DOI. - Kels95
- Kelso, J. A. S.(1995) Dynamic Patterns: The Self-Organization of Brain and Behavior (Complex Adaptive Systems). . The MIT Press
- KEMW05
- Kendall, B. E., Ellner, S. P., McCauley, E., Wood, S. N., Briggs, C. J., Murdoch, W. W., & Turchin, P. (2005) Population cycles in the pine looper moth: Dynamical tests of mechanistic hypotheses.
*Ecological Monographs*, 75(2), 259–276. - MKWL11
- Martini, M., Kranz, T. A., Wagner, T., & Lehnertz, K. (2011) Inferring directional interactions from transient signals with symbolic transfer entropy.
*Phys. Rev. E*, 83(1), 011919. DOI. - Marw08
- Marwan, N. (2008) A historical review of recurrence plots.
*The European Physical Journal Special Topics*, 164(1), 3–12. DOI. - PCFS80
- Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S.(1980) Geometry from a Time Series.
*Physical Review Letters*, 45(9), 712–716. DOI. - Ragi11
- Raginsky, M. (2011) Directed information and Pearl’s causal calculus. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 958–965). DOI.
- RTKB04
- Romano, M. C., Thiel, M., Kurths, J., & von Bloh, W. (2004) Multivariate recurrence plots.
*Physics Letters A*, 330(3–4), 214–223. DOI. - RuSW05
- Rudary, M., Singh, S., & Wingate, D. (2005) Predictive Linear-Gaussian Models of Stochastic Dynamical Systems. In arXiv:1207.1416 [cs].
- Ruel98
- Ruelle, D. (1998) Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics.
- RyRy10
- Ryabko, D., & Ryabko, B. (2010) Nonparametric Statistical Inference for Ergodic Processes.
*IEEE Transactions on Information Theory*, 56(3), 1430–1435. DOI. - SaYC91
- Sauer, T., Yorke, J. A., & Casdagli, M. (1991) Embedology.
*Journal of Statistical Physics*, 65(3-4), 579–616. DOI. - Schö02
- Schöner, G. (2002) Timing, Clocks, and Dynamical Systems.
*Brain and Cognition*, 48(1), 31–51. DOI. - SHRK06
- Shalizi, C. R., Haslinger, R., Rouquier, J.-B., Klinkner, K. L., & Moore, C. (2006) Automatic Filters for the Detection of Coherent Structure in Spatiotemporal Systems.
*Physical Review E*, 73(3). DOI. - Smit00
- Smith, L. A.(2000) Disentangling Uncertainty and Error: On the predictability of nonlinear systems. In Nonlinear Dynamics and Statistics.
- Stro01
- Strogatz, S. H.(2001) Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity). . Westview Press
- Valp11
- Valpine, P. de. (2011) Frequentist analysis of hierarchical models for population dynamics and demographic data.
*Journal of Ornithology*, 152(2), 393–408. DOI. - BeDo95
- van Beijeren, H., & Dorfman, J. R.(1995) Lyapunov Exponents and Kolmogorov-Sinai Entropy for the Lorentz Gas at Low Densities.
*Phys. Rev. Lett.*, 74(22), 4412–4415. DOI. - WoWT00
- Wolpert, D. H., Wheeler, K. R., & Tumer, K. (2000) Collective intelligence for control of distributed dynamical systems.
*EPL (Europhysics Letters)*, 49, 708. DOI.