The Living Thing / Notebooks :

Dynamical systems

Remember linear time invariant systems, as made famous by signal processing? Now relax the assumption that the model is linear, or even that its state space is in \(\mathbb{R}^n\). Maybe its state is a measure, or a symbol, or whatever. Now say the word “chaos!”. Pronounce the exclamation mark. Maybe it’s a random system, a stochastic process, or a deterministic process representing the evolution of the measure of stochastic process or whatever.

(Regarding that, one day I should try to understand how Talagrand uses isoperimetric inequalities to derive concentration inequalities.)

Topics that I should connect to this one: the weird end: “nonlinear time series wizardy”, Also “sync”. And “ergodic theory”.

To wish I understood: Takens embedding, and whether it is any statistical use at all.

There is too much to do here, and it’s done better elsewhere. therefore: Idiosyncratic notes only.


Ay, N., Bernigau, H., Der, R., & Prokopenko, M. (2012) Information-driven self-organization: the dynamical system approach to autonomous robot behavior. Theory in Biosciences, 131(3), 161–179. DOI.
Ay, N., Der, R., & Prokopenko, M. (2010) Information Driven Self-Organization: The Dynamical System Approach to Autonomous Robot Behavior (No. 10-09-018). . Santa Fe Institute
Ay, N., & Wennekers, T. (2003) Dynamical properties of strongly interacting Markov chains. Neural Networks, 16(10), 1483–1497. DOI.
Badii, R., & Politi, A. (1999) Complexity: Hierarchical Structures and Scaling in Physics. . Cambridge University Press
Beal, M. J.(2003) Variational algorithms for approximate Bayesian inference. . University of London
Bown, O., & McCormack, J. (2010) Taming nature: tapping the creative potential of ecosystem models in the arts. Digital Creativity, 21(4), 215–231. DOI.
Ceguerra, R. V., Lizier, J. T., & Zomaya, A. Y.(2011) Information storage and transfer in the synchronization process in locally-connected networks. . Presented at the IEEE Symposium Series in Computational Intelligence (SSCI 2011) - IEEE Symposium on Artificial Life,
Chazottes, J.-R. (n.d.) An introduction to fluctuations of observables in chaotic dynamical systems.
Fraser, A. M.(2008) Hidden Markov models and dynamical systems. . Philadelphia, PA: Society for Industrial and Applied Mathematics
Glazier, J. A., & Libchaber, A. (1988) Quasi-periodicity and dynamical systems: An experimentalist’s view. IEEE Transactions on Circuits and Systems, 35(7), 790–809. DOI.
Grassberger, P., Schreiber, T., & Schaffrath, C. (1991) Nonlinear time sequence analysis. International Journal of Bifurcation and Chaos, 1(3), 521–547. DOI.
Hefny, A., Downey, C., & Gordon, G. (2015) A New View of Predictive State Methods for Dynamical System Learning. arXiv:1505.05310 [cs, Stat].
Heinonen, M., & d’Alché-Buc, F. (2014) Learning nonparametric differential equations with operator-valued kernels and gradient matching. arXiv:1411.5172 [cs, Stat].
Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., & Bhattacharya, J. (2007) Causality detection based on information-theoretic approaches in time series analysis. Physics Reports, 441(1), 1–46. DOI.
Ionides, E. L., Bretó, C., & King, A. A.(2006) Inference for nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 103(49), 18438–18443. DOI.
Kakizawa, Y., Shumway, R. H., & Taniguchi, M. (1998) Discrimination and clustering for multivariate time series. Journal of the American Statistical Association, 328–340.
Kelso, J. A. S.(1994) The informational character of self-organized coordination dynamics. Human Movement Science, 13, 393–413. DOI.
Kelso, J. A. S.(1995) Dynamic Patterns: The Self-Organization of Brain and Behavior (Complex Adaptive Systems). . The MIT Press
Kendall, B. E., Ellner, S. P., McCauley, E., Wood, S. N., Briggs, C. J., Murdoch, W. W., & Turchin, P. (2005) Population cycles in the pine looper moth: Dynamical tests of mechanistic hypotheses. Ecological Monographs, 75(2), 259–276.
Martini, M., Kranz, T. A., Wagner, T., & Lehnertz, K. (2011) Inferring directional interactions from transient signals with symbolic transfer entropy. Phys. Rev. E, 83(1), 011919. DOI.
Marwan, N. (2008) A historical review of recurrence plots. The European Physical Journal Special Topics, 164(1), 3–12. DOI.
Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S.(1980) Geometry from a Time Series. Physical Review Letters, 45(9), 712–716. DOI.
Raginsky, M. (2011) Directed information and Pearl’s causal calculus. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 958–965). DOI.
Romano, M. C., Thiel, M., Kurths, J., & von Bloh, W. (2004) Multivariate recurrence plots. Physics Letters A, 330(3–4), 214–223. DOI.
Rudary, M., Singh, S., & Wingate, D. (2005) Predictive Linear-Gaussian Models of Stochastic Dynamical Systems. In arXiv:1207.1416 [cs].
Ruelle, D. (1998) Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics.
Ryabko, D., & Ryabko, B. (2010) Nonparametric Statistical Inference for Ergodic Processes. IEEE Transactions on Information Theory, 56(3), 1430–1435. DOI.
Sauer, T., Yorke, J. A., & Casdagli, M. (1991) Embedology. Journal of Statistical Physics, 65(3-4), 579–616. DOI.
Schöner, G. (2002) Timing, Clocks, and Dynamical Systems. Brain and Cognition, 48(1), 31–51. DOI.
Shalizi, C. R., Haslinger, R., Rouquier, J.-B., Klinkner, K. L., & Moore, C. (2006) Automatic Filters for the Detection of Coherent Structure in Spatiotemporal Systems. Physical Review E, 73(3). DOI.
Smith, L. A.(2000) Disentangling Uncertainty and Error: On the predictability of nonlinear systems. In Nonlinear Dynamics and Statistics.
Strogatz, S. H.(2001) Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity). . Westview Press
Valpine, P. de. (2011) Frequentist analysis of hierarchical models for population dynamics and demographic data. Journal of Ornithology, 152(2), 393–408. DOI.
van Beijeren, H., & Dorfman, J. R.(1995) Lyapunov Exponents and Kolmogorov-Sinai Entropy for the Lorentz Gas at Low Densities. Phys. Rev. Lett., 74(22), 4412–4415. DOI.
Wolpert, D. H., Wheeler, K. R., & Tumer, K. (2000) Collective intelligence for control of distributed dynamical systems. EPL (Europhysics Letters), 49, 708. DOI.