TBD.

Birkhoff ergodic theorem. Frobenius-Perron operator. Quasicompactness implying correlation decay. C&C CLT for Markov chains - Nagaev.

Relevance to actual stochastic processes and dynamical systems, especially linear. and nonlinear system identification, and long-memory systems.

## Refs

- AlBo05
- Aly, E.-E. A. A., & Bouzar, N. (2005) Stationary solutions for integer-valued autoregressive processes.
*International Journal of Mathematics and Mathematical Sciences*, 2005(1), 1–18. DOI. - BrMa01
- Brémaud, P., & Massoulié, L. (2001) Hawkes branching point processes without ancestors.
*Journal of Applied Probability*, 38(1), 122–135. DOI. - GaLe14
- Gallo, S., & Leonardi, F. G.(2014) Nonparametric statistical inference for the context tree of a stationary ergodic process.
*arXiv:1411.7650 [Math, Stat]*. - GöKü96
- Götze, F., & Künsch, H. R.(1996) Second-order correctness of the blockwise bootstrap for stationary observations.
*The Annals of Statistics*, 24(5), 1914–1933. DOI. - Gray09
- Gray, R. M.(2009) Probability, random processes, and ergodic properties. . Springer Verlag
- IsFu01
- Ishioka, S., & Fuchikami, N. (2001) Thermodynamics of computing: Entropy of nonergodic systems.
*Chaos*, 11(3), 734–746. DOI. - KePe06
- Keane, M., & Petersen, K. (2006) Easy and nearly simultaneous proofs of the Ergodic Theorem and Maximal Ergodic Theorem.
*IMS Lecture Notes-Monograph Series Dynamics & Stochastics*, 48. DOI. - Lair78
- Laird, N. (1978) Nonparametric Maximum Likelihood Estimation of a Mixing Distribution.
*Journal of the American Statistical Association*, 73(364), 805–811. DOI. - LiIS12
- Livan, G., Inoue, J., & Scalas, E. (2012) On the non-stationarity of financial time series: impact on optimal portfolio selection.
*Journal of Statistical Mechanics: Theory and Experiment*, 2012(7), P07025. DOI. - McSS11
- McDonald, D. J., Shalizi, C. R., & Schervish, M. (2011) Risk bounds for time series without strong mixing.
*arXiv:1106.0730 [Cs, Stat]*. - MoYG96
- Morvai, G., Yakowitz, S., & Györfi, L. (1996) Nonparametric inference for ergodic, stationary time series.
*The Annals of Statistics*, 24(1), 370–379. DOI. - Palm82
- Palmer, R. G.(1982) Broken ergodicity.
*Advances in Physics*, 31(6), 669–735. DOI. - Rose84
- Rosenblatt, M. (1984) Asymptotic Normality, Strong Mixing and Spectral Density Estimates.
*The Annals of Probability*, 12(4), 1167–1180. DOI. - RyRy10
- Ryabko, D., & Ryabko, B. (2010) Nonparametric Statistical Inference for Ergodic Processes.
*IEEE Transactions on Information Theory*, 56(3), 1430–1435. DOI. - ShWu07
- Shao, X., & Wu, W. B.(2007) Asymptotic spectral theory for nonlinear time series.
*The Annals of Statistics*, 35(4), 1773–1801. DOI. - Shie98
- Shields, P. C.(1998) The interactions between ergodic theory and information theory.
*Information Theory, IEEE Transactions on*, 44(6), 2079–2093. DOI. - Stei97
- Steif, J. E.(1997) Consistent estimation of joint distributions for sufficiently mixing random fields.
*The Annals of Statistics*, 25(1), 293–304. - StNe95
- Stein, D. L., & Newman, C. M.(1995) Broken ergodicity and the geometry of rugged landscapes.
*Physical Review E*, 51(6), 5228–5238. DOI. - ThWe12
- THOUVENOT, J.-P., & Weiss, B. (2012) Limit Laws for Ergodic Processes.
*Stochastics and Dynamics*, 12(1), 1150012. DOI. - Whit54
- Whittle, P. (1954) On stationary processes in the plane.
*Biometrika*, 41(3/4), 434–449.