The Living Thing / Notebooks :

Ergodic theory / mixing

For when things happen in time instead of probability


Relevance to actual stochastic processes and dynamical systems, especially linear. and nonlinear system identification, and long-memory systems.

Keywords to look up:

Not much material here, but please see learning theory for dependent data for some interesting categorisations of mixing and transcendence of stupid mixing conditions for statistical estimators.

Mixing zoo



Sequential Rademacher complexity


Aly, E.-E. A. A., & Bouzar, N. (2005) Stationary solutions for integer-valued autoregressive processes. International Journal of Mathematics and Mathematical Sciences, 2005(1), 1–18. DOI.
Brémaud, P., & Massoulié, L. (2001) Hawkes branching point processes without ancestors. Journal of Applied Probability, 38(1), 122–135. DOI.
Gallo, S., & Leonardi, F. G.(2014) Nonparametric statistical inference for the context tree of a stationary ergodic process. arXiv:1411.7650 [Math, Stat].
Götze, F., & Künsch, H. R.(1996) Second-order correctness of the blockwise bootstrap for stationary observations. The Annals of Statistics, 24(5), 1914–1933. DOI.
Gray, R. M.(2009) Probability, random processes, and ergodic properties. . Springer Verlag
Ishioka, S., & Fuchikami, N. (2001) Thermodynamics of computing: Entropy of nonergodic systems. Chaos, 11(3), 734–746. DOI.
Keane, M., & Petersen, K. (2006) Easy and nearly simultaneous proofs of the Ergodic Theorem and Maximal Ergodic Theorem. IMS Lecture Notes-Monograph Series Dynamics & Stochastics, 48. DOI.
Laird, N. (1978) Nonparametric Maximum Likelihood Estimation of a Mixing Distribution. Journal of the American Statistical Association, 73(364), 805–811. DOI.
Livan, G., Inoue, J., & Scalas, E. (2012) On the non-stationarity of financial time series: impact on optimal portfolio selection. Journal of Statistical Mechanics: Theory and Experiment, 2012(7), P07025. DOI.
McDonald, D. J., Shalizi, C. R., & Schervish, M. (2011) Risk bounds for time series without strong mixing. arXiv:1106.0730 [Cs, Stat].
Morvai, G., Yakowitz, S., & Györfi, L. (1996) Nonparametric inference for ergodic, stationary time series. The Annals of Statistics, 24(1), 370–379. DOI.
Palmer, R. G.(1982) Broken ergodicity. Advances in Physics, 31(6), 669–735. DOI.
Rosenblatt, M. (1984) Asymptotic Normality, Strong Mixing and Spectral Density Estimates. The Annals of Probability, 12(4), 1167–1180. DOI.
Ryabko, D., & Ryabko, B. (2010) Nonparametric Statistical Inference for Ergodic Processes. IEEE Transactions on Information Theory, 56(3), 1430–1435. DOI.
Shao, X., & Wu, W. B.(2007) Asymptotic spectral theory for nonlinear time series. The Annals of Statistics, 35(4), 1773–1801. DOI.
Shields, P. C.(1998) The interactions between ergodic theory and information theory. Information Theory, IEEE Transactions on, 44(6), 2079–2093. DOI.
Steif, J. E.(1997) Consistent estimation of joint distributions for sufficiently mixing random fields. The Annals of Statistics, 25(1), 293–304.
Stein, D. L., & Newman, C. M.(1995) Broken ergodicity and the geometry of rugged landscapes. Physical Review E, 51(6), 5228–5238. DOI.
THOUVENOT, J.-P., & Weiss, B. (2012) Limit Laws for Ergodic Processes. Stochastics and Dynamics, 12(1), 1150012. DOI.
Whittle, P. (1954) On stationary processes in the plane. Biometrika, 41(3/4), 434–449.