The Living Thing / Notebooks :

Learning graphical models from data

what is independent of what

Learning the graph structure, not just the clique potentials.

Much more work.

Learning these models turns out to need a conditional independence test, an awareness of multiple testing and graphs.


Bayati, M., & Montanari, A. (2012) The LASSO Risk for Gaussian Matrices. IEEE Transactions on Information Theory, 58(4), 1997–2017. DOI.
Bühlmann, P., & van de Geer, S. (2011) Statistics for High-Dimensional Data: Methods, Theory and Applications. (2011 edition.). Heidelberg ; New York: Springer
Buntine, W. L.(1996) A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8(2), 195–210. DOI.
Colombo, D., Maathuis, M. H., Kalisch, M., & Richardson, T. S.(2012) Learning high-dimensional directed acyclic graphs with latent and selection variables. The Annals of Statistics, 40(1), 294–321.
Cox, D. R., & Battey, H. S.(2017) Large numbers of explanatory variables, a semi-descriptive analysis. Proceedings of the National Academy of Sciences, 114(32), 8592–8595. DOI.
Drton, M., & Maathuis, M. H.(2017) Structure Learning in Graphical Modeling. Annual Review of Statistics and Its Application, 4(1), 365–393. DOI.
Friedman, J., Hastie, T., & Tibshirani, R. (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441. DOI.
Fu, F., & Zhou, Q. (2013) Learning Sparse Causal Gaussian Networks With Experimental Intervention: Regularization and Coordinate Descent. Journal of the American Statistical Association, 108(501), 288–300. DOI.
Gogate, V., Webb, W., & Domingos, P. (2010) Learning efficient Markov networks. In Advances in Neural Information Processing Systems (pp. 748–756).
Hallac, D., Leskovec, J., & Boyd, S. (2015) Network Lasso: Clustering and Optimization in Large Graphs. ArXiv:1507.00280 [Cs, Math, Stat]. DOI.
Harris, N., & Drton, M. (2013) PC Algorithm for Nonparanormal Graphical Models. Journal of Machine Learning Research, 14(1), 3365–3383.
Hinton, G. E., Osindero, S., & Bao, K. (2005) Learning causally linked markov random fields. In Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics (pp. 128–135). Citeseer
Jung, A., Quang, N. T., & Mara, A. (2017) When is Network Lasso Accurate?. ArXiv:1704.02107 [Stat].
Khoshgnauz, E. (2012) Learning Markov Network Structure using Brownian Distance Covariance. ArXiv:1206.6361 [Cs, Stat].
Kocaoglu, M., Dimakis, A., & Vishwanath, S. (2017) Cost-Optimal Learning of Causal Graphs. In PMLR (pp. 1875–1884).
Krämer, N., Schäfer, J., & Boulesteix, A.-L. (2009) Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinformatics, 10(1), 384. DOI.
Lee, S.-I., Ganapathi, V., & Koller, D. (2006) Efficient Structure Learning of Markov Networks using $ L_1 $-Regularization. In Advances in neural Information processing systems (pp. 817–824). MIT Press
Liu, H., Han, F., Yuan, M., Lafferty, J., & Wasserman, L. (2012) The Nonparanormal SKEPTIC. ArXiv:1206.6488 [Cs, Stat].
Liu, H., Lafferty, J., & Wasserman, L. (2009) The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs. Journal of Machine Learning Research, 10, 2295–2328.
Mazumder, R., & Hastie, T. (2012) The graphical lasso: New insights and alternatives. Electronic Journal of Statistics, 6, 2125–2149. DOI.
Montanari, A. (2012) Graphical models concepts in compressed sensing. Compressed Sensing: Theory and Applications, 394–438.
Neapolitan, R. E., & others. (2004) Learning bayesian networks. (Vol. 38). Prentice Hall Upper Saddle River
Ramsey, J., Glymour, M., Sanchez-Romero, R., & Glymour, C. (2017) A million variables and more: the Fast Greedy Equivalence Search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images. International Journal of Data Science and Analytics, 3(2), 121–129. DOI.
Schelldorfer, J., Meier, L., & Bühlmann, P. (2014) GLMMLasso: An Algorithm for High-Dimensional Generalized Linear Mixed Models Using ℓ1-Penalization. Journal of Computational and Graphical Statistics, 23(2), 460–477. DOI.
Schmidt, M. (2010) Graphical model structure learning with l1-regularization. . UNIVERSITY OF BRITISH COLUMBIA
Textor, J., Idelberger, A., & Liśkiewicz, M. (2015) Learning from Pairwise Marginal Independencies. ArXiv:1508.00280 [Cs].
van de Geer, S. (2014) Worst possible sub-directions in high-dimensional models. In arXiv:1403.7023 [math, stat] (Vol. 131).
Wu, R., Srikant, R., & Ni, J. (2012) Learning graph structures in discrete Markov random fields. In INFOCOM Workshops (pp. 214–219).
Zhao, T., Liu, H., Roeder, K., Lafferty, J., & Wasserman, L. (2012) The Huge Package for High-dimensional Undirected Graph Estimation in R. Journal of Machine Learning Research : JMLR, 13, 1059–1062.