The Living Thing / Notebooks :

Natural language processing

Dave, although you took very thorough precautions in the pod against my hearing you, I could see your lips move.

See also design grammars, iterated function systems and my research proposal in this area, grammatical inference.




spaCy excels at large-scale information extraction tasks. It’s written from the ground up in carefully memory-managed Cython. Independent research has confirmed that spaCy is the fastest in the world. If your application needs to process entire web dumps, spaCy is the library you want to be using. […]

spaCy is the best way to prepare text for deep learning. It interoperates seamlessly with TensorFlow, PyTorch, scikit-learn, Gensim and the rest of Python’s awesome AI ecosystem. With spaCy, you can easily construct linguistically sophisticated statistical models for a variety of NLP problems.


Like other deep learning frameworks, there is some basic NLP support in pytorch; see pytorch.text.


NLTK is a classic python teaching library for rolling your own language processing.


Formerly ClearNLP.

The Natural Language Processing for JVM languages (NLP4J) project provides:

NLP tools readily available for research in various disciplines. Frameworks for fast development of efficient and robust NLP components. API for manipulating computational structures in NLP (e.g., dependency graph). The project is initiated and currently led by the Emory NLP research group with many helps [sic] from the community.

Misc other

  • mate

  • corenlp

  • apache opennlp

  • IMS Open Corpus Workbench (CWB)…

    is a collection of open-source tools for managing and querying large text corpora (ranging from 10 million to 2 billion words) with linguistic annotations.

    I’m uncertain how actively maintained this is.

  • HTK

    The Hidden Markov Model Toolkit (HTK) is a portable toolkit for building and manipulating hidden Markov models. HTK is primarily used for speech recognition research although it has been used for numerous other applications including research into speech synthesis, character recognition and DNA sequencing. HTK is in use at hundreds of sites worldwide.

There are many more, but I am stopping with the links having found the bits and pieces I need for my purposes.


Angluin, D. (1988) Identifying languages from stochastic examples (No. No YALEU/DCS/RR-614).
Arisoy, E., Sainath, T. N., Kingsbury, B., & Ramabhadran, B. (2012) Deep Neural Network Language Models. In Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT (pp. 20–28). Stroudsburg, PA, USA: Association for Computational Linguistics
Autebert, J.-M., Berstel, J., & Boasson, L. (1997) Context-free languages and pushdown automata. In G. Rozenberg & A. Salomaa (Eds.), Handbook of formal languages, vol. 1 (pp. 111–174). New York, NY, USA: Springer-Verlag New York, Inc.
Baeza-Yates, R., & Ribeiro-Neto, B. (1999) Modern Information Retrieval. (1st ed.). Addison Wesley
Bail, C. A.(2016) Combining natural language processing and network analysis to examine how advocacy organizations stimulate conversation on social media. Proceedings of the National Academy of Sciences, 201607151. DOI.
Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003) A neural probabilistic language model. Journal of Machine Learning Research, 3(Feb), 1137–1155.
Berstel, J., & Boasson, L. (1990) Transductions and context-free languages. In J. van Leeuwen, A. R. Meyer, M. Nivat, M. Paterson, & D. Perrin (Eds.), Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity (pp. 1–278).
Booth, T. L., & Thompson, R. A.(1973) Applying Probability Measures to Abstract Languages. IEEE Transactions on Computers, C-22(5), 442–450. DOI.
Charniak, E. (1996) Statistical Language Learning. (Reprint.). A Bradford Book
Chater, N., & Manning, C. D.(2006) Probabilistic models of language processing and acquisition. Trends in Cognitive Sciences, 10(7), 335–344. DOI.
Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014) Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In EMNLP 2014.
Clark, A., & Eyraud, R. (2005) Identification in the Limit of Substitutable Context-Free Languages. In S. Jain, H. Simon, & E. Tomita (Eds.), Algorithmic Learning Theory (Vol. 3734, pp. 283–296). Springer Berlin / Heidelberg
Clark, A., Eyraud, R., & Habrard, A. (2008) A Polynomial Algorithm for the Inference of Context Free Languages. In A. Clark, F. Coste, & L. Miclet (Eds.), Grammatical Inference: Algorithms and Applications (Vol. 5278, pp. 29–42). Springer Berlin / Heidelberg
Clark, A., Florêncio, C. C., & Watkins, C. (2006) Languages as Hyperplanes: Grammatical Inference with String Kernels. In J. Fürnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), Machine Learning: ECML 2006 (pp. 90–101). Springer Berlin Heidelberg
Clark, A., Florêncio, C. C., Watkins, C., & Serayet, M. (2006) Planar Languages and Learnability. In Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, & E. Tomita (Eds.), Grammatical Inference: Algorithms and Applications (pp. 148–160). Springer Berlin Heidelberg
Collins, M., & Duffy, N. (2002) Convolution Kernels for Natural Language. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14 (pp. 625–632). MIT Press
Gold, E. M.(1967) Language identification in the limit. Information and Control, 10(5), 447–474. DOI.
Gonzalez, R. C., & Thomason, M. G.(1978) Syntactic pattern recognition: an introduction.
Grefenstette, E., Hermann, K. M., Suleyman, M., & Blunsom, P. (2015) Learning to Transduce with Unbounded Memory. ArXiv:1506.02516 [Cs].
Greibach, S. A.(1966) The Unsolvability of the Recognition of Linear Context-Free Languages. J. ACM, 13(4), 582–587. DOI.
Hopcroft, J. E., & Ullman, J. D.(1979) Introduction to Automata Theory, Languages and Computation. (1st ed.). Addison-Wesley Publishing Company
Huang, P.-S. (2015) Shallow and deep learning for audio and natural language processing. . University of Illinois at Urbana-Champaign
Kontorovich, L. (Aryeh), Cortes, C., & Mohri, M. (2008) Kernel methods for learning languages. Theoretical Computer Science, 405(3), 223–236. DOI.
Kontorovich, L., Cortes, C., & Mohri, M. (2006) Learning Linearly Separable Languages. In J. L. Balcázar, P. M. Long, & F. Stephan (Eds.), Algorithmic Learning Theory (pp. 288–303). Springer Berlin Heidelberg
Lafferty, J. D., McCallum, A., & Pereira, F. C. N.(2001) Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the Eighteenth International Conference on Machine Learning (pp. 282–289). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015) A Critical Review of Recurrent Neural Networks for Sequence Learning. ArXiv:1506.00019 [Cs].
MacKinlay, A. D.(2012) Pushing the boundaries of deep parsing.
Manning, C. D.(2002) Probabilistic syntax. In Probabilistic linguistics (pp. 289–341). Cambridge, MA: MIT Press
Manning, C. D., Raghavan, P., & Schütze, H. (2008) Introduction to Information Retrieval. . Cambridge University Press
Manning, C. D., & Schütze, H. (1999) Foundations of statistical natural language processing. . Cambridge, Mass.: MIT Press
Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., & Khudanpur, S. (2010) Recurrent Neural Network Based Language Model. In Eleventh Annual Conference of the International Speech Communication Association.
Mikolov, T., Le, Q. V., & Sutskever, I. (2013) Exploiting Similarities among Languages for Machine Translation. ArXiv:1309.4168 [Cs].
Mitra, B., & Craswell, N. (2017) Neural Models for Information Retrieval. ArXiv:1705.01509 [Cs].
Mohri, M., Pereira, F., & Riley, M. (1996) Weighted Automata in Text and Speech Processing. In Proceedings of the 12th biennial European Conference on Artificial Intelligence (ECAI-96), Workshop on Extended finite state models of language. Budapest, Hungary: John Wiley and Sons, Chichester
Mohri, M., Pereira, F., & Riley, M. (2002) Weighted finite-state transducers in speech recognition. Computer Speech & Language, 16(1), 69–88. DOI.
O’Donnell, T. J., Tenenbaum, J. B., & Goodman, N. D.(2009) Fragment Grammars: Exploring Computation and Reuse in Language.
Pennington, J., Socher, R., & Manning, C. D.(2014) GloVe: Global vectors for word representation. Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), 12.
Petersson, K.-M., Folia, V., & Hagoort, P. (2012) What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120(2), 83–95. DOI.
Salakhutdinov, R. (2015) Learning Deep Generative Models. Annual Review of Statistics and Its Application, 2(1), 361–385. DOI.
Solan, Z., Horn, D., Ruppin, E., & Edelman, S. (2005) Unsupervised learning of natural languages. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11629–11634. DOI.
Sutton, C., McCallum, A., & Rohanimanesh, K. (2007) Dynamic Conditional Random Fields: Factorized Probabilistic Models for Labeling and Segmenting Sequence Data. J. Mach. Learn. Res., 8, 693–723.
van Rijsbergen, C. J.(1979) Information Retrieval. (2nd ed.). Butterworth-Heinemann
Wetherell, C. S.(1980) Probabilistic Languages: A Review and Some Open Questions. ACM Comput. Surv., 12(4), 361–379. DOI.
Wolff, J. G.(2000) Syntax, parsing and production of natural language in a framework of information compression by multiple alignment, unification and search. Journal of Universal Computer Science, 6(8), 781–829.