The Living Thing / Notebooks :

Linear and least-squares estimation of point processes

Berman-turner device. K-function. TBD.

Refs

Aale78
Aalen, O. (1978) Nonparametric Inference for a Family of Counting Processes. The Annals of Statistics, 6(4), 701–726. DOI.
AdMM09
Adams, R. P., Murray, I., & MacKay, D. J. C.(2009) Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities. (pp. 1–8). ACM Press DOI.
BaTu00
Baddeley, A., & Turner, R. (2000) Practical Maximum Pseudolikelihood for Spatial Point Patterns. Australian & New Zealand Journal of Statistics, 42(3), 283–322. DOI.
BQFW01
Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N.(2001) Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. Journal of Neuroscience Methods, 105(1), 25–37. DOI.
BaCo91
Barron, A. R., & Cover, T. M.(1991) Minimum complexity density estimation. IEEE Transactions on Information Theory, 37(4), 1034–1054. DOI.
BeVG13
Benichoux, A., Vincent, E., & Gribonval, R. (2013) A fundamental pitfall in blind deconvolution with sparse and shift-invariant priors. In ICASSP-38th International Conference on Acoustics, Speech, and Signal Processing-2013.
BeTu92
Berman, M., & Turner, T. R.(1992) Approximating Point Process Likelihoods with GLIM. Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1), 31–38. DOI.
Besa77
Besag, J. (1977) Efficiency of Pseudolikelihood Estimation for Simple Gaussian Fields. Biometrika, 64(3), 616–618. DOI.
BrMR05
Brémaud, P., Massoulié, L., & Ridolfi, A. (2005) Power spectra of random spike fields and related processes. Advances in Applied Probability, 37(4), 1116–1146. DOI.
BuES88
Buckley, M. J., Eagleson, G. K., & Silverman, B. W.(1988) The estimation of residual variance in nonparametric regression. Biometrika, 75(2), 189–199. DOI.
Chau91
Chaudhuri, P. (1991) Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation. The Annals of Statistics, 19(2), 760–777. DOI.
ChWH05
Chiang, C.-T., Wang, M.-C., & Huang, C.-Y. (2005) Kernel Estimation of Rate Function for Recurrent Event Data. Scandinavian Journal of Statistics, 32(1), 77–91. DOI.
CoOs90
Cox, D. D., & O’Sullivan, F. (1990) Asymptotic Analysis of Penalized Likelihood and Related Estimators. The Annals of Statistics, 18(4), 1676–1695. DOI.
Cuca08
Cucala, L. (2008) Intensity Estimation for Spatial Point Processes Observed with Noise. Scandinavian Journal of Statistics, 35(2), 322–334. DOI.
DiFr84
Diaconis, P., & Freedman, D. (1984) Asymptotics of Graphical Projection Pursuit. The Annals of Statistics, 12(3), 793–815.
Digg79
Diggle, P. J.(1979) On Parameter Estimation and Goodness-of-Fit Testing for Spatial Point Patterns. Biometrics, 35(1), 87–101. DOI.
EFBS04
Eden, U., Frank, L., Barbieri, R., Solo, V., & Brown, E. (2004) Dynamic Analysis of Neural Encoding by Point Process Adaptive Filtering. Neural Computation, 16(5), 971–998. DOI.
EiDD16
Eichler, M., Dahlhaus, R., & Dueck, J. (2016) Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions. Journal of Time Series Analysis, n/a-n/a. DOI.
Elli91
Ellis, S. P.(1991) Density estimation for point processes. Stochastic Processes and Their Applications, 39(2), 345–358. DOI.
Fata12
Fatalov, V. R.(2012) Integral functionals for the exponential of the wiener process and the Brownian bridge: Exact asymptotics and legendre functions. Mathematical Notes, 92(1–2), 79–98. DOI.
GaGu12
Gaïffas, S., & Guilloux, A. (2012) High-dimensional additive hazards models and the Lasso. Electronic Journal of Statistics, 6, 522–546. DOI.
Gree87
Green, P. J.(1987) Penalized Likelihood for General Semi-Parametric Regression Models. International Statistical Review / Revue Internationale de Statistique, 55(3), 245–259. DOI.
Guan08a
Guan, Y. (2008a) A goodness-of-fit test for inhomogeneous spatial Poisson processes. Biometrika, 95(4), 831–845. DOI.
Guan08b
Guan, Y. (2008b) Variance estimation for statistics computed from inhomogeneous spatial point processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1), 175–190.
GuSh07
Guan, Y., & Sherman, M. (2007) On least squares fitting for stationary spatial point processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(1), 31–49. DOI.
Hans10
Hansen, N. R.(2010) Penalized maximum likelihood estimation for generalized linear point processes. ArXiv:1003.0848 [Math, Stat].
HaKD13
Hawe, S., Kleinsteuber, M., & Diepold, K. (2013) Analysis operator learning and its application to image reconstruction. IEEE Transactions on Image Processing, 22(6), 2138–2150. DOI.
HeMa99
Helmers, R., & Mangku, I. W.(1999) Statistical Estimation of Poisson Intensity Functions. ANN. INST. STAT. MATH, 51, 265–280.
HuST98
Hurvich, C. M., Simonoff, J. S., & Tsai, C.-L. (1998) Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 60(2), 271–293.
JeKü94
Jensen, J. L., & Künsch, H. R.(1994) On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes. Annals of the Institute of Statistical Mathematics, 46(3), 475–486. DOI.
JeMø91
Jensen, J. L., & Møller, J. (1991) Pseudolikelihood for Exponential Family Models of Spatial Point Processes. The Annals of Applied Probability, 1(3), 445–461. DOI.
JuFK07
Juban, J., Fugon, L., & Kariniotakis, G. (2007) Probabilistic short-term wind power forecasting based on kernel density estimators. . Presented at the European Wind Energy Conference and exhibition, EWEC 2007
KoHa01
Koenker, R., & Hallock, K. F.(2001) Quantile Regression. The Journal of Economic Perspectives, 15(4), 143–156.
KoMa99
Koenker, R., & Machado, J. A. F.(1999) Goodness of Fit and Related Inference Processes for Quantile Regression. Journal of the American Statistical Association, 94(448), 1296–1310. DOI.
MBPS09
Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2009) Online Dictionary Learning for Sparse Coding. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 689–696). New York, NY, USA: ACM DOI.
MaYo05a
Matsumoto, H., & Yor, M. (2005a) Exponential functionals of Brownian motion, I: Probability laws at fixed time. Probability Surveys, 2, 312–347. DOI.
MaYo05b
Matsumoto, H., & Yor, M. (2005b) Exponential functionals of Brownian motion, II: Some related diffusion processes. Probability Surveys, 2, 348–384. DOI.
PuTu86
Puri, M. L., & Tuan, P. D.(1986) Maximum likelihood estimation for stationary point processes. Proceedings of the National Academy of Sciences of the United States of America, 83(3), 541–545.
Reyn03
Reynaud-Bouret, P. (2003) Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities. Probability Theory and Related Fields, 126(1). DOI.
RRGT14
Reynaud-Bouret, P., Rivoirard, V., Grammont, F., & Tuleau-Malot, C. (2014) Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis. The Journal of Mathematical Neuroscience, 4(1), 3. DOI.
ReRo07
Reynaud-Bouret, P., & Roy, E. (2007) Some non asymptotic tail estimates for Hawkes processes. Bulletin of the Belgian Mathematical Society - Simon Stevin, 13(5), 883–896.
ReSc10
Reynaud-Bouret, P., & Schbath, S. (2010) Adaptive estimation for Hawkes processes; application to genome analysis. The Annals of Statistics, 38(5), 2781–2822. DOI.
RiAG16
Riabiz, M., Ardeshiri, T., & Godsill, S. (2016) A central limit theorem with application to inference in α-stable regression models. (pp. 70–82). Presented at the NIPS 2016 Time Series Workshop
ScMB14
Schelldorfer, J., Meier, L., & Bühlmann, P. (2014) GLMMLasso: An Algorithm for High-Dimensional Generalized Linear Mixed Models Using ℓ1-Penalization. Journal of Computational and Graphical Statistics, 23(2), 460–477. DOI.
Scho05
Schoenberg, F. P.(2005) Consistent parametric estimation of the intensity of a spatial–temporal point process. Journal of Statistical Planning and Inference, 128(1), 79–93. DOI.
Silv82
Silverman, B. W.(1982) On the Estimation of a Probability Density Function by the Maximum Penalized Likelihood Method. The Annals of Statistics, 10(3), 795–810. DOI.
SFHT11
Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2011) Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software, 39(5).
SILS11
Simpson, D., Illian, J., Lindgren, F., Sørbye, S., & Rue, H. (2011) Going off grid: Computationally efficient inference for log-Gaussian Cox processes. ArXiv:1111.0641 [Math, Stat].
SmBr03
Smith, A., & Brown, E. (2003) Estimating a state-space model from point process observations. Neural Computation, 15(5), 965–991. DOI.
ThAH15
Thrampoulidis, C., Abbasi, E., & Hassibi, B. (2015) LASSO with Non-linear Measurements is Equivalent to One With Linear Measurements. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 28 (pp. 3402–3410). Curran Associates, Inc.
GBRD14
van de Geer, S., Bühlmann, P., Ritov, Y., & Dezeure, R. (2014) On asymptotically optimal confidence regions and tests for high-dimensional models. The Annals of Statistics, 42(3), 1166–1202. DOI.
Lies11
van Lieshout, M.-C. N. M.(2011) On Estimation of the Intensity Function of a Point Process. Methodology and Computing in Applied Probability, 14(3), 567–578. DOI.
WuMZ13
Wu, S., Müller, H.-G., & Zhang, Z. (2013) Functional Data Analysis for Point Processes with Rare Events. Statistica Sinica, 23(1), 1–23.
ZURG17
Zarezade, A., Upadhyay, U., Rabiee, H. R., & Gomez-Rodriguez, M. (2017) RedQueen: An Online Algorithm for Smart Broadcasting in Social Networks. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (pp. 51–60). New York, NY, USA: ACM Press DOI.