The Living Thing / Notebooks :

Linear and least-squares estimation of point processes

Berman-turner device. K-function. TBD.


Aalen, O. (1978) Nonparametric Inference for a Family of Counting Processes. The Annals of Statistics, 6(4), 701–726. DOI.
Adams, R. P., Murray, I., & MacKay, D. J. C.(2009) Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities. (pp. 1–8). ACM Press DOI.
Baddeley, A., & Turner, R. (2000) Practical Maximum Pseudolikelihood for Spatial Point Patterns. Australian & New Zealand Journal of Statistics, 42(3), 283–322. DOI.
Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N.(2001) Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. Journal of Neuroscience Methods, 105(1), 25–37. DOI.
Barron, A. R., & Cover, T. M.(1991) Minimum complexity density estimation. IEEE Transactions on Information Theory, 37(4), 1034–1054. DOI.
Benichoux, A., Vincent, E., & Gribonval, R. (2013) A fundamental pitfall in blind deconvolution with sparse and shift-invariant priors. In ICASSP-38th International Conference on Acoustics, Speech, and Signal Processing-2013.
Berman, M., & Turner, T. R.(1992) Approximating Point Process Likelihoods with GLIM. Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1), 31–38. DOI.
Besag, J. (1977) Efficiency of Pseudolikelihood Estimation for Simple Gaussian Fields. Biometrika, 64(3), 616–618. DOI.
Brémaud, P., Massoulié, L., & Ridolfi, A. (2005) Power spectra of random spike fields and related processes. Advances in Applied Probability, 37(4), 1116–1146. DOI.
Buckley, M. J., Eagleson, G. K., & Silverman, B. W.(1988) The estimation of residual variance in nonparametric regression. Biometrika, 75(2), 189–199. DOI.
Chaudhuri, P. (1991) Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation. The Annals of Statistics, 19(2), 760–777. DOI.
Chiang, C.-T., Wang, M.-C., & Huang, C.-Y. (2005) Kernel Estimation of Rate Function for Recurrent Event Data. Scandinavian Journal of Statistics, 32(1), 77–91. DOI.
Cox, D. D., & O’Sullivan, F. (1990) Asymptotic Analysis of Penalized Likelihood and Related Estimators. The Annals of Statistics, 18(4), 1676–1695. DOI.
Cucala, L. (2008) Intensity Estimation for Spatial Point Processes Observed with Noise. Scandinavian Journal of Statistics, 35(2), 322–334. DOI.
Diaconis, P., & Freedman, D. (1984) Asymptotics of Graphical Projection Pursuit. The Annals of Statistics, 12(3), 793–815.
Diggle, P. J.(1979) On Parameter Estimation and Goodness-of-Fit Testing for Spatial Point Patterns. Biometrics, 35(1), 87–101. DOI.
Eden, U., Frank, L., Barbieri, R., Solo, V., & Brown, E. (2004) Dynamic Analysis of Neural Encoding by Point Process Adaptive Filtering. Neural Computation, 16(5), 971–998. DOI.
Eichler, M., Dahlhaus, R., & Dueck, J. (2016) Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions. Journal of Time Series Analysis, n/a-n/a. DOI.
Ellis, S. P.(1991) Density estimation for point processes. Stochastic Processes and Their Applications, 39(2), 345–358. DOI.
Fatalov, V. R.(2012) Integral functionals for the exponential of the wiener process and the Brownian bridge: Exact asymptotics and legendre functions. Mathematical Notes, 92(1–2), 79–98. DOI.
Gaïffas, S., & Guilloux, A. (2012) High-dimensional additive hazards models and the Lasso. Electronic Journal of Statistics, 6, 522–546. DOI.
Green, P. J.(1987) Penalized Likelihood for General Semi-Parametric Regression Models. International Statistical Review / Revue Internationale de Statistique, 55(3), 245–259. DOI.
Guan, Y. (2008a) A goodness-of-fit test for inhomogeneous spatial Poisson processes. Biometrika, 95(4), 831–845. DOI.
Guan, Y. (2008b) Variance estimation for statistics computed from inhomogeneous spatial point processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1), 175–190.
Guan, Y., & Sherman, M. (2007) On least squares fitting for stationary spatial point processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(1), 31–49. DOI.
Hansen, N. R.(2010) Penalized maximum likelihood estimation for generalized linear point processes. ArXiv:1003.0848 [Math, Stat].
Hawe, S., Kleinsteuber, M., & Diepold, K. (2013) Analysis operator learning and its application to image reconstruction. IEEE Transactions on Image Processing, 22(6), 2138–2150. DOI.
Helmers, R., & Mangku, I. W.(1999) Statistical Estimation of Poisson Intensity Functions. ANN. INST. STAT. MATH, 51, 265–280.
Hurvich, C. M., Simonoff, J. S., & Tsai, C.-L. (1998) Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 60(2), 271–293.
Jensen, J. L., & Künsch, H. R.(1994) On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes. Annals of the Institute of Statistical Mathematics, 46(3), 475–486. DOI.
Jensen, J. L., & Møller, J. (1991) Pseudolikelihood for Exponential Family Models of Spatial Point Processes. The Annals of Applied Probability, 1(3), 445–461. DOI.
Juban, J., Fugon, L., & Kariniotakis, G. (2007) Probabilistic short-term wind power forecasting based on kernel density estimators. . Presented at the European Wind Energy Conference and exhibition, EWEC 2007
Koenker, R., & Hallock, K. F.(2001) Quantile Regression. The Journal of Economic Perspectives, 15(4), 143–156.
Koenker, R., & Machado, J. A. F.(1999) Goodness of Fit and Related Inference Processes for Quantile Regression. Journal of the American Statistical Association, 94(448), 1296–1310. DOI.
Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2009) Online Dictionary Learning for Sparse Coding. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 689–696). New York, NY, USA: ACM DOI.
Matsumoto, H., & Yor, M. (2005a) Exponential functionals of Brownian motion, I: Probability laws at fixed time. Probability Surveys, 2, 312–347. DOI.
Matsumoto, H., & Yor, M. (2005b) Exponential functionals of Brownian motion, II: Some related diffusion processes. Probability Surveys, 2, 348–384. DOI.
Puri, M. L., & Tuan, P. D.(1986) Maximum likelihood estimation for stationary point processes. Proceedings of the National Academy of Sciences of the United States of America, 83(3), 541–545.
Reynaud-Bouret, P. (2003) Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities. Probability Theory and Related Fields, 126(1). DOI.
Reynaud-Bouret, P., Rivoirard, V., Grammont, F., & Tuleau-Malot, C. (2014) Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis. The Journal of Mathematical Neuroscience, 4(1), 3. DOI.
Reynaud-Bouret, P., & Roy, E. (2007) Some non asymptotic tail estimates for Hawkes processes. Bulletin of the Belgian Mathematical Society - Simon Stevin, 13(5), 883–896.
Reynaud-Bouret, P., & Schbath, S. (2010) Adaptive estimation for Hawkes processes; application to genome analysis. The Annals of Statistics, 38(5), 2781–2822. DOI.
Riabiz, M., Ardeshiri, T., & Godsill, S. (2016) A central limit theorem with application to inference in α-stable regression models. (pp. 70–82). Presented at the NIPS 2016 Time Series Workshop
Schelldorfer, J., Meier, L., & Bühlmann, P. (2014) GLMMLasso: An Algorithm for High-Dimensional Generalized Linear Mixed Models Using ℓ1-Penalization. Journal of Computational and Graphical Statistics, 23(2), 460–477. DOI.
Schoenberg, F. P.(2005) Consistent parametric estimation of the intensity of a spatial–temporal point process. Journal of Statistical Planning and Inference, 128(1), 79–93. DOI.
Silverman, B. W.(1982) On the Estimation of a Probability Density Function by the Maximum Penalized Likelihood Method. The Annals of Statistics, 10(3), 795–810. DOI.
Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2011) Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software, 39(5).
Simpson, D., Illian, J., Lindgren, F., Sørbye, S., & Rue, H. (2011) Going off grid: Computationally efficient inference for log-Gaussian Cox processes. ArXiv:1111.0641 [Math, Stat].
Smith, A., & Brown, E. (2003) Estimating a state-space model from point process observations. Neural Computation, 15(5), 965–991. DOI.
Thrampoulidis, C., Abbasi, E., & Hassibi, B. (2015) LASSO with Non-linear Measurements is Equivalent to One With Linear Measurements. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 28 (pp. 3402–3410). Curran Associates, Inc.
van de Geer, S., Bühlmann, P., Ritov, Y., & Dezeure, R. (2014) On asymptotically optimal confidence regions and tests for high-dimensional models. The Annals of Statistics, 42(3), 1166–1202. DOI.
van Lieshout, M.-C. N. M.(2011) On Estimation of the Intensity Function of a Point Process. Methodology and Computing in Applied Probability, 14(3), 567–578. DOI.
Wu, S., Müller, H.-G., & Zhang, Z. (2013) Functional Data Analysis for Point Processes with Rare Events. Statistica Sinica, 23(1), 1–23.
Zarezade, A., Upadhyay, U., Rabiee, H. R., & Gomez-Rodriguez, M. (2017) RedQueen: An Online Algorithm for Smart Broadcasting in Social Networks. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (pp. 51–60). New York, NY, USA: ACM Press DOI.