a.k.a. recursive estimation, recursive estimation, tate space model calibration, recursive identification.

State filters are cool for estimating
time-varying hidden states.
How about learning the *parameters* of the model generating your states?
Classic ways that you can do this in dynamical systems
include
basic
linear system identification,
and general system identification.
But can you identify the fixed parameters (not just hidden states)
with a state filter?

Yes.

Contents

According to LIFM12, here are some landmark papers:

Augmenting the unobserved state vector is a well known technique, used in the system identification community for decades, see e.g. Ljung (Ljun79); Söderström and Stoica (SöSt88); Lindström et al. (LSBW08). Similar ideas, using Sequential Monte Carlos methods, were suggested by Kitagawa (Kita98); Liu and West (LiWe01). Combined state and parameter estimation is also the standard technique for data assimilation in high-dimensional systems, see Moradkhani et al. (MSGH05); Evensen (Even09a, Even09b ).

However, introducing random walk dynamics to the parameters with fixed variance leads to a new dynamical stochastic system with properties that may be different from the properties of the original system. That implies that the variance of the random walk should be decreased, when the method is used for offline parameter estimation, cf. Hürzeler and Künsch (HüKü01).

## Iterated filtering

Related: indirect inference. Precise relation will have to wait, since I currently do not care enough about indirect inference.

## Questions

Ionides and King dominate my citations, at least for the frequentist stuff. Surely other people use this method too? But what are the keywords? This research is suspiciously concentrated in U Michigan, but the idea is not so esoteric. I think I am caught in a citation bubble.

update: the oceanographic crew of Even03 etc seem to do this with Bayes a lot.

a lot of the variational filtering literature turns out to be about attempting this with, effectively, neural nets.

can I estimate regularisation this way, despite the lack of probabilistic interpretation? (leveraging Bayesian-prior parameter relations)

How does this work with non-Markov systems? Do we need to bother, or can we just do the Hamiltonian trick and augment the state vector? Can we talk about mixing, or correlation decay? Should I then shoot for the new-wave mixing approaches of Kuznetsov and Mohri etc?

### Basic Construction

There are a few variations. We start with the basic continuous time state space model.

Here we have an unobserved Markov state process \(x(t)\) on \(\mathcal{X}\) and an observation process \(y(t)\) on \(\mathcal{Y}\). For now they will be assumed to be finite dimensional vectors over \(\mathbb{R}.\) They will additionally depend upon a vector of parameters \(\theta\) We observe the process at discrete times \(t(1:T)=(t_1, t_2,\dots, t_T),\) and we will write the observations \(y(1:T)=(y(t_1), y(t_2),\dots, y(1_T)).\)

We presume our processes are completely specified by the following conditional densities (which might not have closed-form expression)

The transition density

The observation density (which seems overgeneral TBH…)

TBC….

## Awaiting filing

Recently enjoyed:
Sahani Pathiraja’s state filter does something cool,
in attempting to identify
process *model* noise - a conditional nonparametric density of process errors,
that may be used to come up with some neat process models.
I’m not convinced about her use of
kernel density estimators,
since these scale badly precisely when you need them most,
in high dimension; but any nonparametric density estimator would,
I assume, work.

## Implementations

pomp does state filtering inference in R.

For some example of doing this in Stan see Sinhrks’ stan-statespace.

## Refs

- AnDH10
- Andrieu, C., Doucet, A., & Holenstein, R. (2010) Particle Markov chain Monte Carlo methods.
*Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 72(3), 269–342. DOI. - APBC15
- Archer, E., Park, I. M., Buesing, L., Cunningham, J., & Paninski, L. (2015) Black box variational inference for state space models.
*ArXiv:1511.07367 [Stat]*. - BaMa17
- Bamler, R., & Mandt, S. (2017) Structured Black Box Variational Inference for Latent Time Series Models.
*ArXiv:1707.01069 [Cs, Stat]*. - BHIK09
- Bretó, C., He, D., Ionides, E. L., & King, A. A.(2009) Time series analysis via mechanistic models.
*The Annals of Applied Statistics*, 3(1), 319–348. DOI. - BrPK16
- Brunton, S. L., Proctor, J. L., & Kutz, J. N.(2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
*Proceedings of the National Academy of Sciences*, 113(15), 3932–3937. DOI. - CKDG15
- Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., & Bengio, Y. (2015) A Recurrent Latent Variable Model for Sequential Data. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 28 (pp. 2980–2988). Curran Associates, Inc.
- DeDJ06
- Del Moral, P., Doucet, A., & Jasra, A. (2006) Sequential Monte Carlo samplers.
*Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 68(3), 411–436. DOI. - DeDJ11
- Del Moral, P., Doucet, A., & Jasra, A. (2011) An adaptive sequential Monte Carlo method for approximate Bayesian computation.
*Statistics and Computing*, 22(5), 1009–1020. DOI. - DoFG01
- Doucet, A., Freitas, N., & Gordon, N. (2001) Sequential Monte Carlo Methods in Practice. . New York, NY: Springer New York
- DoJR13
- Doucet, A., Jacob, P. E., & Rubenthaler, S. (2013) Derivative-Free Estimation of the Score Vector and Observed Information Matrix with Application to State-Space Models.
*ArXiv:1304.5768 [Stat]*. - DuKo12
- Durbin, J., & Koopman, S. J.(2012) Time series analysis by state space methods. (2nd ed.). Oxford: Oxford University Press
- Even09a
- Evensen, Geir. (2009a) Data Assimilation - The Ensemble Kalman Filter. . Berlin; Heidelberg: Springer
- Even09b
- Evensen, G. (2009b) The ensemble Kalman filter for combined state and parameter estimation.
*IEEE Control Systems*, 29(3), 83–104. DOI. - Even03
- Evensen, Geir. (2003) The Ensemble Kalman Filter: theoretical formulation and practical implementation.
*Ocean Dynamics*, 53(4), 343–367. DOI. - FeKü18
- Fearnhead, P., & Künsch, H. R.(2018) Particle Filters and Data Assimilation.
*Annual Review of Statistics and Its Application*, 5(1), 421–449. DOI. - HeIK10
- He, D., Ionides, E. L., & King, A. A.(2010) Plug-and-play inference for disease dynamics: measles in large and small populations as a case study.
*Journal of The Royal Society Interface*, 7(43), 271–283. DOI. - HeBu14
- Heinonen, M., & d’Alché-Buc, F. (2014) Learning nonparametric differential equations with operator-valued kernels and gradient matching.
*ArXiv:1411.5172 [Cs, Stat]*. - HüKü01
- Hürzeler, M., & Künsch, H. R.(2001) Approximating and Maximising the Likelihood for a General State-Space Model. In Sequential Monte Carlo Methods in Practice (pp. 159–175). Springer, New York, NY DOI.
- InMa17
- Ingraham, J., & Marks, D. (2017) Variational Inference for Sparse and Undirected Models. In PMLR (pp. 1607–1616).
- IoBK06
- Ionides, E. L., Bretó, C., & King, A. A.(2006) Inference for nonlinear dynamical systems.
*Proceedings of the National Academy of Sciences*, 103(49), 18438–18443. DOI. - INAS15
- Ionides, Edward L., Nguyen, D., Atchadé, Y., Stoev, S., & King, A. A.(2015) Inference for dynamic and latent variable models via iterated, perturbed Bayes maps.
*Proceedings of the National Academy of Sciences*, 112(3), 719–724. DOI. - IBAK11
- Ionides, Edward L., Bhadra, A., Atchadé, Y., & King, A. (2011) Iterated filtering.
*The Annals of Statistics*, 39(3), 1776–1802. DOI. - KDSM09
- Kantas, N., Doucet, A., Singh, S. S., & Maciejowski, J. M.(2009) An Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State-Space Models.
*IFAC Proceedings Volumes*, 42(10), 774–785. DOI. - KDSM15
- Kantas, Nikolas, Doucet, A., Singh, S. S., Maciejowski, J., & Chopin, N. (2015) On Particle Methods for Parameter Estimation in State-Space Models.
*Statistical Science*, 30(3), 328–351. DOI. - Kita98
- Kitagawa, G. (1998) A self-organizing state-space model.
*Journal of the American Statistical Association*, 1203–1215. - KrSS15
- Krishnan, R. G., Shalit, U., & Sontag, D. (2015) Deep kalman filters.
*ArXiv Preprint ArXiv:1511.05121*. - KrSS17
- Krishnan, R. G., Shalit, U., & Sontag, D. (2017) Structured Inference Networks for Nonlinear State Space Models. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (pp. 2101–2109).
- LIJR17
- Le, T. A., Igl, M., Jin, T., Rainforth, T., & Wood, F. (2017) Auto-Encoding Sequential Monte Carlo.
*ArXiv Preprint ArXiv:1705.10306*. - LeDL07
- Lele, S. R., Dennis, B., & Lutscher, F. (2007) Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods.
*Ecology Letters*, 10(7), 551. DOI. - LeNS10
- Lele, Subhash R., Nadeem, K., & Schmuland, B. (2010) Estimability and likelihood inference for generalized linear mixed models using data cloning.
*Journal of the American Statistical Association*, 105(492), 1617–1625. DOI. - LIFM12
- Lindström, E., Ionides, E., Frydendall, J., & Madsen, H. (2012) Efficient Iterated Filtering. In IFAC-PapersOnLine (System Identification, Volume 16) (Vol. 45, pp. 1785–1790). IFAC & Elsevier Ltd. DOI.
- LSBW08
- Lindström, E., Ströjby, J., Brodén, M., Wiktorsson, M., & Holst, J. (2008) Sequential calibration of options.
*Computational Statistics & Data Analysis*, 52(6), 2877–2891. DOI. - LiWe01
- Liu, J., & West, M. (2001) Combined Parameter and State Estimation in Simulation-Based Filtering. In Sequential Monte Carlo Methods in Practice (pp. 197–223). Springer, New York, NY DOI.
- Ljun79
- Ljung, L. (1979) Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems.
*IEEE Transactions on Automatic Control*, 24(1), 36–50. DOI. - LjPW12
- Ljung, Lennart, Pflug, G. C., & Walk, H. (2012) Stochastic approximation and optimization of random systems. (Vol. 17). Birkhäuser
- LjSö83
- Ljung, Lennart, & Söderström, T. (1983) Theory and practice of recursive identification. . Cambridge, Mass: MIT Press
- MLTH17
- Maddison, C. J., Lawson, D., Tucker, G., Heess, N., Norouzi, M., Mnih, A., … Teh, Y. W.(2017) Filtering Variational Objectives.
*ArXiv Preprint ArXiv:1705.09279*. - MSGH05
- Moradkhani, H., Sorooshian, S., Gupta, H. V., & Houser, P. R.(2005) Dual state–parameter estimation of hydrological models using ensemble Kalman filter.
*Advances in Water Resources*, 28(2), 135–147. DOI. - NLRB17
- Naesseth, C. A., Linderman, S. W., Ranganath, R., & Blei, D. M.(2017) Variational Sequential Monte Carlo.
*ArXiv Preprint ArXiv:1705.11140*. - OlPS17
- Oliva, J. B., Poczos, B., & Schneider, J. (2017) The Statistical Recurrent Unit.
*ArXiv:1703.00381 [Cs, Stat]*. - SZLB95
- Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y., … Juditsky, A. (1995) Nonlinear black-box modeling in system identification: a unified overview.
*Automatica*, 31(12), 1691–1724. DOI. - SöSt88
- Söderström, T., & Stoica, P. (Eds.). (1988) System Identification. . Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
- TaOl17
- Tallec, C., & Ollivier, Y. (2017) Unbiasing Truncated Backpropagation Through Time.
*ArXiv:1705.08209 [Cs]*. - TABH03
- Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., & Whitaker, J. S.(2003) Ensemble square root filters.
*Monthly Weather Review*, 131(7), 1485–1490. - Werb88
- Werbos, P. J.(1988) Generalization of backpropagation with application to a recurrent gas market model.
*Neural Networks*, 1(4), 339–356. DOI.