The Living Thing / Notebooks :

Semi/weakly-supervised learning and label propagation

On extracting nutrition from bullshit

I’m not yet sure what this is, but I’ve seen these words invoked in machine learning problems with a partially-observed model, whee you hope to simultaneously learn the parameters of the generation process and the observation process: So if I have a bunch of crowd-sourced labels for my data and I wish to use them to train a classifier, but I suspect that my crowd is a little unreliable, then I try to do “weakly supervised” learning when I learn both the true labels and the crowd whimsy process, as a kind of hierarchical model of informative sampling (e.g. MZMG15) Or I might assume no explicit model for the crowd whimsy, but simply that similar data should not be too differently labelled, a.k.a. Label Propagation, which uses graph clustering to infer data labels

Other methods?


Delalleau, O., Bengio, Y., & Le Roux, N. (2005) Efficient Nonparametric function induction in semi-supervised learning. In In Proc. Artificial Intelligence and Statistics. Citeseer
Jung, A., Hero III, A. O., Mara, A., & Jahromi, S. (2016) Semi-Supervised Learning via Sparse Label Propagation. ArXiv:1612.01414 [Cs, Stat].
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014) Large-Scale Video Classification with Convolutional Neural Networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1725–1732). Washington, DC, USA: IEEE Computer Society DOI.
Kumar, A., & Raj, B. (2016) Audio Event Detection Using Weakly Labeled Data. In Proceedings of the 2016 ACM on Multimedia Conference (pp. 1038–1047). New York, NY, USA: ACM DOI.
Kumar, A., & Raj, B. (2017) Deep CNN Framework for Audio Event Recognition using Weakly Labeled Web Data. ArXiv:1707.02530 [Cs].
Li, Z., & Tang, J. (2015) Weakly Supervised Deep Metric Learning for Community-Contributed Image Retrieval. IEEE Transactions on Multimedia, 17(11), 1989–1999. DOI.
Misra, I., Zitnick, C. L., Mitchell, M., & Girshick, R. (2015) Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels. In Proceedings of CVPR.
Papandreou, G., Chen, L.-C., Murphy, K., & Yuille, A. L.(n.d.) Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation.
Wu, F., Wang, Z., Zhang, Z., Yang, Y., Luo, J., Zhu, W., & Zhuang, Y. (2015) Weakly Semi-Supervised Deep Learning for Multi-Label Image Annotation. IEEE Transactions on Big Data, 1(3), 109–122. DOI.
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2003) Learning with Local and Global Consistency. In Proceedings of the 16th International Conference on Neural Information Processing Systems (pp. 321–328). Cambridge, MA, USA: MIT Press
Zhu, X., & Ghahramani, Z. (2002) Learning from Labeled and Unlabeled Data with Label Propagation.