The Living Thing / Notebooks :


I am working on an project with with @kultkat and @stahlnow to bring easy sonification of visuals to the masses.

Here is the main source code repository, and here is the online prototype. You are invited to play with it yourself, and contribute to development.


Achlioptas, D. (2003) Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4), 671–687. DOI.
Ailon, N., & Chazelle, B. (2009) The Fast Johnson–Lindenstrauss Transform and Approximate Nearest Neighbors. SIAM Journal on Computing, 39(1), 302–322. DOI.
Alaoui, A. E., & Mahoney, M. W.(2014) Fast Randomized Kernel Methods With Statistical Guarantees. arXiv:1411.0306 [Cs, Stat].
Fodor, I. (2002) A Survey of Dimension Reduction Techniques.
Gel, Y. R., Lyubchich, V., & Ramirez, L. L.(2016) Fast Patchwork Bootstrap for Quantifying Estimation Uncertainties in Sparse Random Networks.
Giryes, R., Sapiro, G., & Bronstein, A. M.(2016) Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?. IEEE Transactions on Signal Processing, 64(13), 3444–3457. DOI.
Hawe, S., Kleinsteuber, M., & Diepold, K. (2013) Analysis operator learning and its application to image reconstruction. IEEE Transactions on Image Processing, 22(6), 2138–2150. DOI.
He, K., Wang, Y., & Hopcroft, J. (2016) A Powerful Generative Model Using Random Weights for the Deep Image Representation. arXiv:1606.04801 [Cs].
Hong, S., Roh, B., Kim, K.-H., Cheon, Y., & Park, M. (2016) PVANet: Lightweight Deep Neural Networks for Real-time Object Detection. arXiv:1611.08588 [Cs].
Kane, D. M., & Nelson, J. (2014) Sparser Johnson-Lindenstrauss Transforms. Journal of the ACM, 61(1), 1–23. DOI.
Lahat, M., Niederjohn, R. J., & Krubsack, D. (1987) A spectral autocorrelation method for measurement of the fundamental frequency of noise-corrupted speech. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(6), 741–750. DOI.
Li, P., Hastie, T. J., & Church, K. W.(2006) Very Sparse Random Projections. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 287–296). New York, NY, USA: ACM DOI.
Maillard, O.-A., & Munos, R. (2012) Linear regression with random projections. Journal of Machine Learning Research, 13(Sep), 2735–2772.
Naseem, I., Togneri, R., & Bennamoun, M. (2010) Linear regression for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(11), 2106–2112.
Oymak, S., & Tropp, J. A.(2015) Universality laws for randomized dimension reduction, with applications. arXiv:1511.09433 [Cs, Math, Stat].
Patraucean, V., Handa, A., & Cipolla, R. (2015) Spatio-temporal video autoencoder with differentiable memory. arXiv:1511.06309 [Cs].
Rahimi, A., & Recht, B. (2007) Random features for large-scale kernel machines. In Advances in neural information processing systems (pp. 1177–1184). Curran Associates, Inc.
Rasmussen, J. G., Møller, J., Aukema, B. H., Raffa, K. F., & Zhu, J. (2007) Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), 701–713. DOI.
Song, D., & Tao, D. (2010) Biologically inspired feature manifold for scene classification. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 19(1), 174–184. DOI.
Zhao, B., Fei-Fei, L., & Xing, E. P.(2011) Online detection of unusual events in videos via dynamic sparse coding. In 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3313–3320). DOI.